background-default

วันพฤหัสบดี ที่ 15 มกราคม 2569

Login
Login

จาก 'Chatbot' สู่ 'Agent' ปลดล็อกมิติใหม่ การใช้ AI ในองค์กร

จาก 'Chatbot' สู่ 'Agent' ปลดล็อกมิติใหม่ การใช้ AI ในองค์กร

ภาคอุตสาหกรรมเห็นพ้องต้องกันอย่างชัดเจนว่าปี 2568 เป็นการเริ่มต้นยุค “AI Agent” กระทั่งมาถึงปัจจุบันในปี 2569 นี้ถูกมองว่าเป็นระบบอัจฉริยะที่ก้าวข้ามขีดจำกัดของ chatbots และ copilots

อาลีบาบา คลาวด์ ให้ข้อมุลว่า AI Agent สามารถกำหนดเป้าหมาย ตัดสินใจเรื่องซับซ้อน และดำเนินงานหลายขั้นตอนได้อย่างอิสระภายใต้การกำกับดูแลของมนุษย์

กล่าวได้ว่า การเปลี่ยนแปลงจากการเป็นเพียงเครื่องมือเก็บข้อมูลความรู้ (passive knowledge tools) ไปสู่การเป็นระบบที่ทำงานเชิงรุกและเน้นการลงมือปฏิบัติในครั้งนี้เป็นการก้าวกระโดดครั้งสำคัญด้านขีดความสามารถของ agent

แมคคินเซย์ ชี้ให้เห็นว่าก้าวสำคัญต่อไปของ generative AI คือการเปลี่ยนผ่านจากงานที่ใช้ข้อมูลความรู้ (knowledge-based tasks) ไปสู่งานที่เน้นการลงมือทำโดย agents

ทั้งนี้ AI agent ต่าง ๆ ที่มาพร้อมความสามารถในการใช้เหตุผล การวางแผน และการปรับกลยุทธ์แบบเรียลไทม์ ที่มีประสิทธิภาพล้ำหน้า จะพร้อมทำงานในสภาพแวดล้อมที่ซับซ้อน เพื่อให้การทำงานในโลกของการใช้งานจริงประสบผลสำเร็จ ดังนั้น จึงไม่น่าแปลกใจที่มีการคาดการณ์ว่าตลาด agentic AI จะเติบโตอย่างก้าวกระโดดในอีกไม่กี่ปีข้างหน้า

ขั้นกว่าของ ‘แชตบอต’

การเติบโตของ AI Agent: จากการทดลองสู่การใช้งานอย่างแพร่หลาย เราได้เห็นการเปลี่ยนผ่านจาก chatbot ธรรมดา ๆ สู่การเป็น agent ที่สามารถลงมือปฏิบัติได้แล้ว

องค์กรต่าง ๆ กำลังทดสอบและเริ่มนำ AI agents ไปใช้อย่างจริงจัง เพื่อเพิ่มประสิทธิภาพให้กับเวิร์กโฟลว์ต่าง ๆ ตั้งแต่การจัดตารางการประชุมอัตโนมัติ การสร้างรายงานการวิเคราะห์ และการดีบักโค้ด ไปจนถึงการเตรียมแคมเปญการตลาดและการขาย การคัดกรองจดหมายสมัครงาน และการจัดการคำถามจากลูกค้า

การคาดการณ์บางส่วนระบุว่า ภายในปี 2569 agentic AI จะเริ่มเติบโตเต็มที่ จากการเป็นเพียงการทดลองแบบแยกส่วน เปลี่ยนผ่านไปสู่การนำไปใช้ในกลุ่มธุรกิจต่าง ๆ อย่างกว้างขวาง

การเร่งตัวนี้จะได้รับแรงหนุนจากขีดความสามารถที่เพิ่มขึ้นของ agent ซึ่งรวมถึงความเป็นอิสระที่เพิ่มขึ้น การรับรู้บริบท การผนวกเครื่องมือเข้าด้วยกัน ขีดความสามารถในการประมวลผลข้อมูลหลายรูปแบบ (multimodal capabilities)

รวมไปถึงการปรับแต่งให้เหมาะกับแต่ละบุคคล หน่วยความจำระยะยาว รวมถึงความปลอดภัยและการปรับจูนให้สอดคล้อง (alignment) กับสิ่งที่มนุษย์ต้องการจริง ๆ

เพิ่มมูลค่า – ปลดล็อกโอกาสใหม่

อย่างไรก็ตาม การจะนำ agents ไปใช้งานในวงกว้าง เพื่อตอบสนองความต้องการทางธุรกิจ ยังคงมีงานที่ต้องทำอีกมาก เพราะปัจจุบัน AI agents ยังคงต้องพึ่งพาโมเดลภาษาขนาดใหญ่ (LLMs) เป็นพื้นฐานในการดำเนินงานต่าง ๆ

การจะสามารถลดการสร้างข้อมูลที่ไม่จริง (hallucination) และเพิ่มความแม่นยำในงานเฉพาะทางได้นั้น ผู้ให้บริการ agent ต้องทำงานอย่างใกล้ชิดกับลูกค้าองค์กรเพื่อพัฒนา agent ที่ปรับแต่งให้เหมาะสมเฉพาะงานที่ต้องการและมีความเชี่ยวชาญเฉพาะด้าน ซึ่งสามารถแก้ไขปัญหาทางธุรกิจในแต่ละวันได้ด้วยอย่างแม่นยำสูง

ดังนั้น การพัฒนา agent ที่สามารถใช้เครื่องมือต่าง ๆ ได้อย่างยืดหยุ่นเพื่อแก้ไขปัญหาต่าง ๆ เพื่อการควบคุมแทรกแซงแบบเรียลไทม์ เพื่อคงความสอดคล้องกับความต้องการของมนุษย์ และเพื่อการบริหารจัดการบริบทอย่างชาญฉลาดเพื่อเพิ่มความแม่นยำ จึงเป็นสิ่งที่มีความสำคัญสูงสุดในการขับเคลื่อนการนำ AI agents ไปปรับใช้ในองค์กรในวงกว้าง 

อาลีบาบายังเห็นวิวัฒนาการที่สำคัญอีกอย่างหนึ่งของยุค agent นั่นคือการที่จะปลดล็อกให้องค์กรได้ใช้ AI อย่างเต็มประสิทธิภาพ ต้องเปลี่ยนจากการใช้โมเดลหรือ agent แบบ standalone ไปสู่ระบบ multi-agent ที่ทำงานร่วมกัน และถูกถักทอเข้าเป็นส่วนหนึ่งของการดำเนินงานทางธุรกิจอย่างแน่นหนา

การทำงานร่วมกันลักษณะนี้เท่านั้นที่จะช่วยให้องค์กรใช้ประโยชน์จาก AI ในระดับที่เพียงพอที่จะสามารถค้นพบมูลค่าทางธุรกิจใหม่ ๆ และสร้างโอกาสในการเติบโตที่ก่อให้เกิดการเปลี่ยนแปลงแบบพลิกโฉมได้

‘multi-agent’ จุดเปลี่ยนสำคัญ

ความท้าทายเหล่านี้กำลังนำไปสู่การเกิดขึ้นของระบบที่เรียกว่า Multi-Agent Systems (MAS) นั่นคือจะไม่ได้ใช้ AI agent ที่ทรงพลังเพียงเอเจนต์เดียวแก้ปัญหาทางธุรกิจที่ซับซ้อน แต่จะใช้เอเจนต์ที่เชี่ยวชาญเฉพาะทางด้านต่าง ๆ ทำงานร่วมกันเป็นทีมเพื่อแก้ไขปัญหานั้น ๆ

เช่น การตัดสินใจลงทุน จะต้องได้รับการสนับสนุนจากกลุ่มเอเจนต์จำนวนมาก เริ่มจากเอเจนต์วิเคราะห์ด้านการเงิน ซึ่งจะทำการวิเคราะห์ปัจจัยพื้นฐาน รายงานการเงิน และ ประเมินมูลค่าของผู้ลงทุนที่มีศักยภาพ ต่อด้วย เอเจนต์วิเคราะห์รายงาน ที่ทำหน้าที่ตรวจสอบและสรุปรายงานก่อนหน้าของบริษัทด้านการลงทุนต่าง ๆ เกี่ยวกับผู้ที่อาจได้รับการลงทุนนี้ และสุดท้ายคือเอเจนต์ข่าวที่ให้ข้อมูลภาพรวมความเคลื่อนไหวของบริษัทในสื่อรวมถึงความน่าเชื่อถือและชื่อเสียงของแบรนด์

การทำงานร่วมกันของ multi-agent จึงไม่ได้เป็นเพียงทางเลือก แต่เป็นจุดเปลี่ยนสำคัญที่จะช่วยให้องค์กรต่าง ๆ ได้ใช้คุณประโยชน์ของ AI อย่างแท้จริงได้เต็มประสิทธิภาพ

อย่างไรก็ดี เอเจนต์แต่ละตัวเป็นเครื่องมือทรงพลังก็จริง แต่การจะเพิ่มความสามารถของแต่ละเอเจนต์ให้ถึงขีดสุด และสร้างผลตอบแทนที่จับต้องได้อย่างทวีคูณและต่อเนื่องในวงกว้างได้นั้น เอเจนต์เหล่านั้นจำเป็นต้องเรียนรู้ที่จะทำงานร่วมกันเป็นทีมได้อย่างมีประสิทธิภาพ

โดยการที่จะทำให้การทำงานร่วมกันแบบ multi-agent เกิดขึ้นได้จริงนั้น จำเป็นต้องมี agent frameworks ที่แข็งแกร่ง เฟรมเวิร์กเหล่านี้ทำหน้าที่เป็นแพลตฟอร์มกลางให้เอเจนต์ต่าง ๆ ทำงานร่วมกัน ผสานโมเดล เครื่องมือ และแหล่งข้อมูลที่หลากหลายเข้าด้วยกัน

รวมถึงประสานการทำงานของเอเจนต์ต่าง ๆ ที่อยู่บนซอฟต์แวร์หลายตัว เพื่อให้สามารถดำเนินการตามขั้นตอนที่ซับซ้อนหลายขั้นตอนได้อย่างอิสระ

อนาคตของ AI ในระดับองค์กรไม่ควรแยกส่วนตามความสามารถเฉพาะตัว แต่ควรมุ่งเน้นไปที่ความร่วมมือ การประสานและจัดระเบียบความสอดคล้องในการทำงานร่วมกัน